799 research outputs found

    Interplanetary stream magnetism: Kinematic effects

    Get PDF
    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed

    Causes of forbush decreases and other cosmic ray variations

    Get PDF
    The relationship between neutron monitor variations and the intensity variations of the interplanetary magnetic field is studied, using Deep River data and IMP-series satellite data. In over 80% of the cases studied, identifiable depressions of the cosmic ray intensity are associated with magnetic field enhancements of several hours duration and intensity above 10 gamma. Conversely, each magnetic field enhancement has an identifiable effect (though not necessarily a marked depression) on the cosmic ray intensity. Long lasting Forbush decreases are found to be the consequence of the successive action of several such features. An explanation is presented and discussed

    Interplanetary magnetic fields, their fluctuations, and cosmic ray variations

    Get PDF
    The cause of Forbush decreases is examined using neutron monitor data and measurements of the interplanetary magnetic field. It is found that for the period examined (Dec. 15, 1965 to April 23, 1966) large enhancements of the interplanetary magnetic field correlate well with decreases in cosmic ray intensity, while various parameters connected with the fluctuations in the field do not display such good correlation. The inference is drawn that Forbush decreases are not related to the turbulence or random motions in the field but to the large scale features of the field

    Integro-Difference Equation for a correlation function of the spin-12{1\over2} Heisenberg XXZ chain

    Full text link
    We consider the Ferromagnetic-String-Formation-Probability correlation function (FSFP) for the spin-121\over 2 Heisenberg XXZ chain. We construct a completely integrable system of integro-difference equations (IDE), which has the FSFP as a τ\tau-function. We derive the associated Riemann-Hilbert problem and obtain the large distance asymptotics of the FSFP correlator in some limiting cases.Comment: 14 pages, latex+epsf, 1 figur

    Hamiltonian formalism of the Landau-Lifschitz equation for a spin chain with full anisotropy

    Full text link
    The Hamiltonian formalism of the Landau-Lifschitz equation for a spin chain with full anisotropy is formulated completely, which constructs a stable base for further investigations.Comment: 11page

    The Crab pulsar light curve in the soft gamma ray range: FIGARO II results

    Get PDF
    The FIGARO II experiment (a large area, balloon borne, crystal scintillator detector working from 0.15 to 4.3 MeV) observed the Crab pulsar on 1990 Jul. 9 for about seven hours. The study of the pulse profile confirms some structures detected with a low significance during the shorter observation of 1986, and adds new important elements to the picture. In particular, between the two main peaks, two secondary peaks appear centered at phase values 0.1 and 0.3, in the energy range 0.38 to 0.49 MeV; in the same energy range, a spectral feature at 0.44 MeV, interpreted as a redshifted positron annihilation line, was observed during the same balloon flight in the phase interval including the second main peak and the neighboring secondary peak. If the phase interval considered is extended to include also the other secondary peak, the significance of the spectral line appears to increase

    A solvable model of a random spin-1/2 XY chain

    Full text link
    The paper presents exact calculations of thermodynamic quantities for the spin-1/2 isotropic XY chain with random lorentzian intersite interaction and transverse field that depends linearly on the surrounding intersite interactions.Comment: 14 pages (Latex), 2 tables, 13 ps-figures included, (accepted for publication in Phys.Rev.B

    Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations

    Full text link
    We calculate exactly matrix elements between states that are not eigenstates of the quantum XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of the system; the Hamiltonian does not contain any time dependence. These matrix elements are expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of refs. modifie

    Entanglement Entropy in Extended Quantum Systems

    Full text link
    After a brief introduction to the concept of entanglement in quantum systems, I apply these ideas to many-body systems and show that the von Neumann entropy is an effective way of characterising the entanglement between the degrees of freedom in different regions of space. Close to a quantum phase transition it has universal features which serve as a diagnostic of such phenomena. In the second part I consider the unitary time evolution of such systems following a `quantum quench' in which a parameter in the hamiltonian is suddenly changed, and argue that finite regions should effectively thermalise at late times, after interesting transient effects.Comment: 6 pages. Plenary talk delivered at Statphys 23, Genoa, July 200
    corecore